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AbShWt 

Some kinetic equations describing heterogeneous decompositions in solid-gas systems 
are derived. Except for one equation obtained via the “reaction order” model the other 
equations describe sigmoid curves. The values of the degree of conversion corresponding 
to the maximum reaction rate a,,,,, are calculated for each derived kinetic equation. 

INTRODUCTION 

In order to describe the occurrence in time of the solid-gas decomposi- 
tions A(s)-+ B(s) + C(g), the general equation has been introduced [l-3] 

v(t) = (d 46 Y)(Z) = dy 
t Y 

(1) 

where v(t, y) is the volume of a nucleus which began to grow at the 
moment y (y <t), dN/dt is the rate of nucleation, and t is the time. The 
volume v(t, y) is given by the formula [l-3] 

v(4 Y) = 446 Y))^ (2) 

where r(t, y) is the linear dimension of a nucleus which began to grow at 
the moment y, o is a factor of form and jl= 1, 2 or 3 for the 
unidimensional, bidimensional and three dimensional growth respectively. 
For a constant rate of growth of a given nucleus 

dr 

iii- - ks (3) 
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and it follows that 

r(k Y) = k,(t - Y) (4) 

From relationships (2) and (4) one obtains 

v(t, y) = ok@ - y)” (5) 

One of the equations which describes the rate of nucleation, corresponds 
to the one stage nucleation and has the form 

f = k,(N, - N) 

where No is the number of potential nuclei, N is the number of nuclei at 
the moment t and kI the nucleation rate constant. 

From eqn. (6) through integration with N = 0 at t = 0, we obtain 

N = Z&(1 - exp(-k,t)) (7) 

or introducing this result in eqn. (6) 

dN 
dt = klNo exp(-k,t) 

Equation (8) as well as other rate equations for nucleation will be 
considered in the following. 

From V(t) and V, (the total volume of the solid reaction product) the 
current value of the degree of conversion a(t) is given by 

a(t) = f 
0 

CRITICAL CONSIDERATIONS CONCERNING THE FORM OF v(t, y) 

Elementary physical considerations show that v(t, y) should satisfy the 
two limit conditions 

lim v(t, y) = 0 
Y-t 

lim v(t, y) = finite 
P+m (11) 

As one can easily verify, u(f, y) given by eqn. (5) does not satisfy 
condition (11) as 

lim o$(t - y)” = 00 (12) t-v- 
This inconsistent result which does not account for the fact that a nucleus 
cannot have an infinite size, is due to the neglect of the nuclei overlap 
during growth. The growing nuclei, at a given moment overlap; thus the 
use of eqn. (5) which supposes that the nuclei develop independently of 
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each other is not justified. 
These observations impose the search for another analytical form for 

u(t, Y). 
As, due to the overlap of the nuclei, the notion of linear growth 

becomes meaningless, we will try to obtain directly the volume of the 
nucleus by using, as a first approximation, an equation of the form 

(13) 

where k, is the rate constant of the volume growth of the nucleus and the 
meaning of q is soon going to be discovered. 

From eqn. (13) through integration for v = 0 at t = 0, one obtains 

v(t)=q(l-exp( -51)) 

Taking into account this last result, eqn. (13) takes the form 

Equation (15) through variable separation and integration leads to 

ldv=I:k,exp( -$“t)dt 

and 

v(t, Y) = 4 exp ( (-:y) -exp( -5t)) 

(14) 

(16) 

(17) 

which is the expression reached instead of eqn. (5). Equation (17) satisfies 
the conditions (10) and (11). Indeed for t-y eqn. (17) leads to v(t, y) = 0 
and 

!iiIq( -:-t)-exp( -:t)=qexp( -:y)=finite 

From eqn. (14) 

lim v(t) = q 
t--w= 

(18) 

(1% 

Thus q represents the maximum volume of a nucleus which began to grow 
at t = 0. 

In the following some applications are given of the general formula (1) 
in which v(t, y) is given by relationship (17). In order to perform the 
calculations various forms of the rate of nucleation will be used. As far as 
the current value of the degree of conversion a(t) is concerned this is 
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given by 

V(t) 
(U(t) = - 

-cl@) 
(20) 

Such an expression could not be used for v(t, y) given by eqn. (5)) 
because in this case 

V(a) = @J (21) 

has been obtained. 

APPLICATIONS 

Because many a(t) curves for isothermal conditions exhibit sigmoidal 
forms, the values t,, and (Y,,, for the maximum value of - daldt are 
determined from the conditions 

Instantaneous nucleation 

In this case all the nuclei appear at t = 0, so that 

N = NO 

In such conditions 

V(t)=N,q(l-exp( -;t)) 

Because 

V(m) = N,q 

it follows that 

or=l-exp( -:-t) 

Introducing the notation 

k 
‘=k 
4 

eqn. (26) takes the integral and differential forms 

- ln(1 - a) = kt 

-d= k(1 - a) 

(22) 

(23) 

(24) 

(2% 

(26) 

(27) 

(28) 

(29) 

this equation belonging to the “reaction order” model. 
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Linear law of nucleation (one stage nucleation) 

dN 
z = kN 

In such conditions 

(30) 

V(t)=[p(exp( -$‘y) -exp( -$t))k,N,dy 

After performing the calculations, relationship (31) turns into 

(31) 

V(t) =y [I-exp( -$t) -$texp( -:l)] 

For t+a from eqn. (32) one obtains 

k&q2 
V(a) = 7 

” 

(32) 

(33) 

Relationships (20), (32) and (33) lead to the isothermal kinetic equation 

LV = 1 - exp(-kt)(l + kt) (34) 

where 

k,% 
4 

(35) 

In order to determine LX,,,, and t,, the following equations should be 
considered: 

da 
dt = k2t exp( -kt) 

and 

d2a 
- = exp( - kt)k’( 1 - kt) 
dt2 

From the condition (22) one obtains 

1 
t =- max k 

By introducing this result in eqn. (34), for t = t,,, we obtain 

(36) 

(37) 

(38) 

(39) ,,=I-~4264 a 
e 
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Two stage nucleation 

dN 
--g = ww 

V(t)=[q(exp( -%y) -exp( --~$WI+V WW 

Taking into account notation (35), after performing the calculations eqn. 
(40) turns into 

v(t) = F (1 -exp(-kt)(@$+ kt + 1)) 

and 

In such conditions 

ix = 1 - exp(-kt)(y + kt + 1) 

da! 
,=exp(-kt)? 

d2a 
- = exp( -kt)k3t 
dt2 

Condition (22) leads to 

1 
km --_= 

2 
0 

and 

2 
t =- max 

k 

Introducing this result in eqn. (43) for t = t,,, one obtains 

(Y max=l -;=0.325 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 
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Three stage nucleation 

(49) 

After pe~orming the ~1cuIation and taking into account notation (35), 
eqn. (50) turns into 

V(t) = y (z - exp(-kt)( y + (kt)2 + 2kt + 2)) 

As 

from relationship (51) and (52) we obtain 

(ktj3 (kt)2 
Ly= f-exp(-kt)(~+--I_+kt+l) 

(51) 

(53) 

In order to evaluate 1y,, and t,,, we have to consider the equations 

dcu 
,=exp(-kt)$ 

and 

d2Cr -= exp(-kt) y 
dt2 

The condition (22) leads to 

3 
t max =- 

k 

By introducing this result in relationship (53) for t = t,,,,, one obtains 

1 
13 

(Y = -- max e3 
= 0.353 

Exponential nucleation (nucleation rate given by relationship (8)) 

For this case 

V(t)=lq(exp( -;y)-exp( -$t))k,N,exp(-k,y)dy 

(55) 

(56) 

(57) 

(58) 
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After performing the detailed calculation one obtains 

k + k, 
(Y = 1 + f exp(-(k, + k)t) - 7 exp(-kt) 

1 1 

t 
1 k,+k 

max =cln- 
I k 

a+1 
CY max = 1 - ~ 

&/a-l) 

where k is given by eqn. (27) and 

k,+k a=- 
k 

As a E (1, +m), it follows that 

CI,,,,,(U ---, 1) = 1 - z = 0.264 
e 

(62) 

(63) 

c&,,(u + 00) = 0 

thus amax E (0,0.264). 

(64) 

COMPARISON WITH EXPERIMENT 

The proposed kinetic equations can be used in order to work out 
experimental curves. When working sigmoid curves, the model should be 
chosen in such a way that the difference between a,,,(exp) and (Y,,,(calc) 
should be as low as possible. 

As an example the reaction 

Pb(NO,),(s)+ PbO(s) + 2NO,(g) + 0.50,(g) 

will be considered. According to the data given in ref. 4, for two 
temperatures T’ and T2 the authors obtained 

T, = 673.15 K amax = 0.33 t,,, = 76.6 min 

& = 688.15 K CY,,, = 0.33 t,,, = 30.8 min 

These results are described by the two-stage nucleation model for which 
cy max = 0.323 was obtained. 

One has to state that in ref. 4 the authors use three kinetic models, the 
Prout-Tompkins model [l-3], the “reaction order” model with IZ = 1 and 
the contracting sphere model. Only the first of these three models 
corresponds to a sigmoid curve. The rate equation is given by 

da 
$=ka(l-a) (65) 
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and 

CX max = 0.50 (66) 

Thus there is a high difference with respect to the experimental value. 
From eqn. (47) we obtain k(T) = 4.47 x 1O-4 SK’ and k(T,) = 1.08 X 

10P3 SC’, with the following vafues for the Arrhenius activation para- 
meters: A = 1.68 X lo4 s-l and E = 227 kJ mol-‘. 

CONCLUSIONS 

New kinetic equation describing solid gas decompositions have been 
proposed. It has been shown that 

(1) eqn. (5) for v(t, y) does not satisfy condition (11); 
(2) the new relationship for v(t, y) (eqn. (17)) satisfies condition (11); 
(3) except in the case of instantaneous nucleation the curves (a, t) are 

of sigmoid form; 
(4) comparison between one of the elaborated models and experiment 

shows good agreement. 
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